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Abstract

Haavelmo was the first to recognize the capacity of economic models to guide
policies. This paper describes some of the barriers that Haavelmo’s ideas have

had (and still have) to overcome, and lays out a logical framework for capturing
the relationships between theory, data and policy questions. The mathematical

tools that emerge from this framework now enable investigators to answer com-
plex policy and counterfactual questions using embarrassingly simple routines,

some by mere inspection of the model’s structure. Several such problems are
illustrated by examples, including misspecification tests, identification, media-

tion and introspection. Finally, we observe that modern economists are largely
unaware of the benefits that Haavelmo’s ideas bestow upon them and, as a
result, econometric research has not fully utilized modern advances in causal

analysis.

1 Introduction

To students of causation, Haavelmo’s paper “The statistical implications of a system
of simultaneous equations,” (Haavelmo, 1943) marks a pivotal turning point, not in
the statistical implications of econometric models but in their causal counterparts.
Causal implications, which prior to Haavelmo’s paper were cast to the mercy of
speculation and intuitive judgment have thus begun their quest for full membership
in the good company of scientific discourse.

Haavelmo introduced three revolutionary insights in 1943.
First, when an economist sits down to write a structural equation he/she envi-

sions, not statistical relationships but a set of hypothetical experiments, qualitative
aspects of which are then encoded in the system of equations. Second, an economic
model thus constructed is capable of answering policy intervention questions, with
no further assistance from the modeller. Finally, to demonstrate the feature above, a
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mathematical method was proposed that takes an arbitrary model, combines it with
data, and derives answers to policy questions in a way that is consistent with both
the data and the model (unless incompatibility is discovered).

1.1 What is an economic model?

This first idea, that an economic model depicts a series of hypothetical experiments
was expressed more forcefully in Haavelmo’s 1944 paper (The probabilistic Approach
to Econometrics) where he states:

“What makes a piece of mathematical economics not only mathematics
but also economics is, I believe, this: When we set up a system of the-
oretical relationships and use economic names for the otherwise purely
theoretical variables involved, we have in mind some actual experiment,
or some design of an experiment, which we could at least imagine ar-
ranging, in order to measure those quantities in real economic life that
we think might obey the laws imposed on their theoretical namesakes.”
(1944, p. 5)

But the seed of this idea was planted already in 1943, when Haavelmo tried to explain
what a modeller must have in mind in putting together two or more simultaneous
equations, say

y = ax + ε1 (1)

x = by + ε2 (2)

Haavelmo first showed that, contrary to naive expectation, the term ax is not equal
to E(Y |x) and, so, asked Haavelmo, what information did the modeller intend a to
carry in Eq. (1), and what information would a provide if we are able to estimate its
value.

In posing this question, Haavelmo addressed the dilemma of incremental model
construction. Given that the statistical content of a can only be discerned (if at all)
by considering the entire system of equations, how can a modeller write down one
equation at a time, without knowing what the meaning of the coefficients is in each
equation. “What is then the significance of the theoretical equations...” Haavelmo
asked (1943, p. 11) and answered it immediately: “To see that, let us consider, not a
problem of passive predictions, but a problem of government planning.”

In modern terms, Haavelmo rejected the then-ruling paradigm that parameters are
conveyors of statistical information and prepared the ground for the causal definition
of a

a =
∂

∂x
E(Y |do(x)) (3)

which refers to a controlled experiment in which an agent (e.g., Government) is con-
trolling x and observing y.1 In such experiment, the average slope of Y on X (i.e.,

1More precisely, the definition of a is a = ∂

∂x
[Yx(u)] when Yx(u) is the counterfactual “Y if x”

for unit u (Pearl, 2009a, Ch. 7). However, counterfactuals were rather late in penetrating structural
modeling (Simon and Rescher, 1966; Balke and Pearl, 1995; Heckman, 2000).
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a) bears no relationship to the regression slope (i.e., ∂
∂x

E(Y |X = x)) in the popu-
lation prior to intervention. Whereas the statistical content of a (if identified) may
come from many equations, its causal content is local – to the great relief of most
economists who think causally, not statistically.

This simple truth, which today is taken (almost) for granted, took a long time
to take roots. To illustrate, the fierce debate between prominent statisticians and
economists that flared up in 1992, fifty years after Haavelmo’s paper, revolved pre-
cisely around this issue of interpreting the meaning of a. The economist in the debate,
Arthur Goldberger (1992), claimed that ax in Eq. (1) may be interpreted as the ex-
pected value of Y “if x were fixed,” so that the a parameter “has natural meaning
for the economist.” The statistician, Nanny Wermuth (1992), argued that, since
ax 6= E(Y |X = x), “the parameters in (1) cannot have the meaning Arthur Gold-
berger claims they have.” Summarizing their arguments, Wermuth concluded that
structural coefficients have dubious meaning, and Goldberger retorted that statistics
has dubious substance. Remarkably, each side quoted Haavelmo to prove the other
wrong, and both sides were in fact correct; structural coefficients have no meaning in
terms of properties of joint distribution functions, the only meaning that statisticians
were willing to accept in the 1990’s. And statistics has no substance, if it excludes
from its province all aspects of the data generating mechanism that do not show up
in the joint distribution, for example, a, or E(Y |do(x)).

The confusion did not end in 1992. The idea that an economic model must
contain extra-statistical information, that is, information that can not be derived
from joint densities, and that the gap between the two can never be bridged, seems
to be very slow in penetrating the mind set of mainstream economists. Hendry, for
example, wrote: “The joint density is the basis: SEMs are merely an interpretation
of that” (Hendry, 1998, personal communication). Spanos (2011), expressing similar
sentiments, hopes to “bridge the gap between theory and data” through the teachings
of Fisher, Neyman and Pearson. Youth of our generation continue to be enticed by
such promises, and have not internalized the hard fact that statistics, however revered,
cannot provide the causal information that economic models must encode to be of
use to policy making.

A highly popular econometrics textbook writes: “A state implements tough new
penalties on drunk drivers: What is the effect on highway fatalities?... [This effect]
is an unknown characteristic of the population joint distribution of X and Y ” (Stock
and Watson, 2007, Chapter 4, p. 111). The fact that “effects” are not characteristics
of population joint distributions, so compellingly demonstrated by Haavelmo (Eq.
(3)), would probably come as a surprise to modern authors of econometric texts. To
witness, almost seventy years after Haavelmo defined a model as a set of hypothetical
experiments, the Wikipedia’s definition of “Econometric Models” reads (February 18,
2012): “An econometric model specifies the statistical relationship that is believed
to hold between the various economic quantities pertaining to particular economic
phenomenal under study.”2

2I was tempted to correct this sentence in the Wikipedia, but decided to keep it as a witness
to prevailing views, and as an incentive for the editors of Econometric Theory to bring the issue to
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1.2 An oracle for policies or an aid to forecasters?

Haavelmo’s second and third insights also took time to be fully appreciated. Even
today, the idea that an economic model should serve as an oracle for interventional
questions tends to evoke immediate doubts and resistance: “How can one predict
outcomes of experiments that where never performed?” Ask the skeptics. And if
the modeller’s assumptions possess such clairvoyant powers, why not answer policy
questions directly, rather than engage in modeling and analysis? How can a set of
ordinary equations encapsulate the information needed for predicting the vast variety
of interventions that a policy maker may wish to evaluate? How is this vast amount
of information encoded, and what means do we have to extract it from its encoding?

To a large extent, this typical resistance stems from the absence of distinct math-
ematical notation for marking the causal assumptions that enter into an economic
model; the syntax of the equations appears deceptively algebraic, similar to that
of regression models, hence void of causal content. Some economists, lured by this
surface similarity, were led to conclude: “We must first emphasize that, disturbance
terms being unobservable, the usual zero covariances “assumptions” generally reduce
to mere definitions and have no necessary causality and exogeneity implications.”
(Richard, 1980, p. 3)

The absence of distinct notation for causal assumptions further compelled economists
to assume that, to qualify for policy analysis, an economic model must be hardened
by some extra ingredients; the equations themselves were deemed too simplistic or
“fragile” to convey interventional information.

The literature on “exogeneity” (e.g. Richard, 1980; Engle, Hendry, and Richard,
1983; Hendry, 1995) for example, sought such extra power in the notion of “parameter
invariance.” Cartwright (2007) sought it in the notion of “modularity” (see Pearl
2010a). And, in general, one would be hard pressed to find an economic textbook that
encourages readers to answer policy questions from the equations themselves, without
resorting to meta-mathematical disclaimers or preconditions that reside outside the
model.

This lack of confidence in the ability of economic models to guide policies has
threatened the utility of the entire enterprise of economic modeling for, taken to
extreme, it commits economic analysis to statistical extrapolation of time series data.
I doubt Haavelmo would agree to such restriction. Indeed, what is the point of
parameter estimation if at the end of such exercise one must appeal to judgment to
decide which parameter is invariant and which is not, or, lacking such judgment, to
physically trying out the policy and observing its effect on various parameters.

A more reasonable alternative, one that I have advocated in (Pearl, 2000, 2009a)
and that is gaining support among economists (e.g., Heckman, 2000, 2003, 2008;
Leamer, 2010; Keane, 2010) is to treat an economic model as an oracle for all causally
related queries, including questions of prospective and introspective counterfactuals
and, simultaneously, insist on encoding the assumptions needed for answering such
queries within the model itself, not external to it. In other words, the model can
be totally wrong and still capable of issuing logically sound and practically useful

public discussion and collective revision.
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conclusions, as long as each conclusion is understood to be contingent on the validity
of a distinct set of assumptions, and as long as we articulate each assumption explicitly
and transparently.

“And what if an intervention changes the very equation that purports to pre-
dict its effect?” ask the critics (e.g., Lucas Jr. (1976)). The answer is that, since
the model provides the facility for encoding side-effects associated with particular
implementations of the intervention evaluated, failure to encode them in the model
constitutes a case of query misspecification, no less damaging than model misspecifi-
cation. The burden of properly specifying queries rests with the query provider not
with the oracle.

1.3 The algorithmization of interventions

Modern days interest in causal models and their tentative conclusions, owes its re-
naissance to Haavelmo’s third insight – a concrete procedure for eliciting answers to
policy questions from the model equations. This he devised at the end of his 1943
paper:

“Assume that the Government decides, through public spending, taxation,
etc., to keep income, rt, at a given level, and that consumption ui and
private investment vi continue to be given by (2.5) and (2.6), the only
change in the system being that, instead of (2.7), we now have

ri = ui + vi + gi (2.7′)

where gi is Government expenditure, so adjusted as to keep r constant,
whatever be u and v,...” (1943, p. 12)

This idea of simulating an intervention on a variable by modifying the equation
that determines that variable while keeping all other equations in tact is the basis of all
modern approaches to causal analysis. Haavelmo’s proposal of adding an adjustable
term to the equation was later transformed by Strotz and Wold (1960) into the
operation of “wiping out” the equation altogether, and was further translated into
graphical models as “wiping out” incoming arrows (Spirtes, Glymour, and Scheines,
1993; Pearl, 1993). This operation has subsequently led to do-calculus (Pearl, 1994,
2009a) and to the structural theory of counterfactuals (Balke and Pearl, 1995; Pearl,
2009a, Ch. 7), which unifies structural equation modeling with the potential outcome
paradigm of Neyman (1923) and Rubin (1974) and the possible-world semantics of
Lewis (1973).

Key to this unifying framework has been a symbolic procedure for reading counter-
factual information in a system of economic equations, as articulated in the following
Definition:

Definition 1 (unit-level counterfactuals) (Pearl, 2000, p. 98)
Let M be a fully specified structural model and X and Y two arbitrary sets of variables
in M . Let Mx be a modified version of M , with the equation(s) of X replaced by
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X = x. Denote the solution for Y in the modified model by the symbol YMx
(u). The

counterfactual Yx(u) (Read: “The value of Y in unit u, had X been x”) is define by

Yx(u)
∆
= YMx

(u). (4)

In words: The counterfactual Yx(u) in model M is defined as the solution for Y in
the modified submodel Mx, with the exogenous variables held at U = u.

We see that every structural equation, say y = ax + ε1 (Eq. (1)), carries coun-
terfactual information, Yxz(u) = ax + ε1, where Z is any set of variables that do
not appear on the right hand side of the equation. Naturally, when the exogenous
variables U in a model are random variables, the counterfactual Yx will be a ran-
dom variable as well, the distribution of which is dictated by the distribution P (u)
and the structure of the model Mx. This interpretation permits us to define joint
distributions of counterfactual variables and to detect conditional independencies of
counterfactuals directly from the structure of the model (Pearl, 2009a, Ch. 7).

Equation (4) constitutes the bridge between the structural interpretation of coun-
terfactuals and the potential outcome framework advanced by Neyman (1923) and Ru-
bin (1974), which takes the controlled randomized experiment as its guiding paradigm.
The essential difference between the two frameworks is that counterfactuals, as well as
critical assumptions such as “ignorability,” “sequential ignorability,” or “instrumen-
tality” can actually be derived from the economic model, rather than be at the mercy
of guesswork and convenience. Another difference is that the antecedent x in the
structural interpretation of Yx(u) need not be a manipulable treatment but may con-
sist of any exogenous or endogenous variable (e.g., sex, genetic traits, race, earning)
that affects Y as part of a social or biological process (Heckman, 2008). This interpre-
tation has extended Haavelmo’s theory of interventions from linear to nonparametric
analysis and permitted questions of identification, estimation, and generalization to
be handled with mathematical precision and algorithmic simplicity (see Section 3).

Haavelmo did not deem his intervention theory to be revolutionary, but natural.
In his words:

“That is, to predict consumption ... under the Government policy,...
we may use the ‘theoretical’ equations obtained by omitting the error
terms...”
“this is only natural, because now the Government is, in fact, performing
‘experiments’ of the type we had in mind when constructing each of the
two equations.” (1943, p. 12)

I do consider it revolutionary in that it encodes the effect of interventions not
in terms of the model’s parameters but in the form of a procedure (or “surgery”)
that modifies the structure of the model. It thus liberates economic analysis from
its dependence on parametric representations and permits a totally nonparametric
calculus of causes and counterfactuals that makes the connection between assumptions
and conclusions explicit and transparent.
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In the next section I will give a brief summary of nonparametric structural models
and the wealth of mathematical tools that they now offer to economists and other
policy-minded data analysts.

2 The Logic of Structural Causal Models (SCM)

This section describes a coherent theory of causal inference that I propose to call
Structural Causal Model (SCM). It takes seriously the original insights of Haavelmo
and the subsequent philosophy of the Cowles Commission program and, enriched with
a few ideas from logic and graph theory, provides a unifying framework for all known
approaches to causation.

A simple way to view SCM is to imagine a logical machine, or an inference engine,
that takes three inputs and produces three outputs. The inputs are:

I-1. A set A of qualitative causal assumptions that the investigator is prepared to
defend on scientific grounds, and a model MA that encodes these assumptions.
(Traditionally, MA takes the form of a set of structural equations with unde-
termined parameters. A typical assumption is that certain omitted factors,
represented by error terms, are uncorrelated, or that no direct effect exists be-
tween a pair of variables (i.e., an “exclusion restriction”).

I-2. A set Q of queries concerning causal and counterfactual relationships among
variables of interest. Traditionally, Q concerned the magnitudes of structural
parameters but, in general, Q may address causal relations more directly, e.g.,

Q1 : What is the effect of treatment X on outcome Y ?

Q2 : Is this employer guilty of gender discrimination?

Formally, each query Qi ∈ Q should be computable from a fully specified the-
oretical model M in which all functional relationships are given, together with
the joint distribution of all omitted factors. Non-computable queries are inad-
missible.

I-3. A set D of experimental or non-experimental data, presumably generated by a
process consistent with A.

The outputs are

O-1. A set A∗ of statements which are the logical implications of A, prior to obtaining
any data. For example, that X has no effect on Y if we hold Z constant, or
that Z is an instrument relative to a pair {X, Y }.

O-2. A set C of data-dependent claims (or conclusions) concerning the magnitudes
or likelihoods of the target queries in Q, each conditional of A. C may con-
tain, in the simple case, the estimated mean and variance of a given structural
parameter, or the expected effect of a given intervention or, to illustrate a coun-
terfactual query, the probability that a student trained in a given program who
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now earns 50K per year would not have reached a salary level greater than 30K
had he/she not been trained (Pearl, 2009a, Ch. 9).

Auxiliary to C , SCM also generates an estimand Qi(P ) for each query in Q, or
a determination that Qi is not identifiable from P , the joint density of observed
variables.

O-3. A list T of testable statistical implications of A, and the degree g(Ti), Ti ∈ T ,
to which the data agrees with each of those implications. A typical implication
would be the vanishing of a specific regression coefficient, or the invariance of
such coefficient to the addition or removal of a given regressor; such constraints
can be read from the model MA and confirmed quantitatively by the data.

The structure of this inferential exercise is shown schematically in Fig. 1.

Q  D, A(       )

Conditional claims Model testing

Data(   )D

g  T(   )

Q −Queries of interest

Identified estimands(   ) −Q  P Testable implicationsT  MA(      ) −

LogicalA* − 
implications of A

CAUSALA − 
ASSUMPTIONS

M(      )A

CAUSAL
MODEL

Estimates of     (   )Q − PQ

Statistical inference

Causal inference

Goodness of fit

Figure 1: Should go SCM methodology depicted as the an inference engine converting
assumptions (A), queries (Q), and data (D) into logical implications (A∗) Conditional
claims (C) and data-fitness indices (g(T )).

Several observations are worth noting before illustrating these inferences by exam-
ples. First, SCM is not a traditional statistical methodology, typified by hypothesis
testing or estimation, because neither claims nor assumptions are expressed in terms
of probability functions of realizable variables (Pearl, 2009a).

Second, all claims produced by SCM are conditional on the validity of A, and
should be reported in conditional format: “If A then Ci” for any claim Ci ∈ C . Such
claims assert that anyone willing to accept A, must also accept Ci out of logical ne-
cessity. Moreover, no other method can do better, that is, if SCM analysis finds that
a subset A′ of assumptions is necessary for inferring a claim Ci, no other method-
ology can infer Ci with a weaker set of assumptions. This follows from casting the
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relationship between A and C in a formal mathematical system, coupled with the
completeness theorems of Halpern (1998) and Shpitser and Pearl (2008).3

Thirdly, passing a goodness-of-fit test is not a prerequisite for the validity of the
conditional claim “If A then Ci,” nor for the validity of Ci. While it is important
to know if any assumptions in A are inconsistent with the data, MA may not have
any testable implications whatsoever. In such a case, the assertion “If A then Ci”
may still be extremely informative in a decision making context, since each Ci con-
veys quantitative information extracted from the data compared with the qualitative
assumptions A with which the study commences. Moreover, even if A turns out in-
consistent with D, the inconsistencies may be entirely due to portions of the model
which have nothing to do with the derivation of Ci (Marschak, 1953). It is therefore
important to identify which statistical implication of A is responsible for the incon-
sistency; global tests for goodness-of-fit hide this information (Pearl 2004; 2009a,
pp. 144-45).

Finally, and this has been realized by many researchers in the 1980’s, there is
nothing in SCM’s methodology to protect C from the inevitability of contradictory
equivalent models, namely, models that satisfy all the testable implications of MA and
still advertise claims that contradict C . Modern developments in graphical modeling
have devised visual and algorithmic tools for detecting, displaying, and enumerating
these equivalent models (Verma and Pearl, 1990; Kyono, 2010; Ali, Richardson, and
Spirtes, 2009). Researchers should keep in mind therefore that only a tiny portion of
the assumptions behind each SCM lends itself to scrutiny by the data; the bulk of it
must remain untestable, at the mercy of scientific judgment.

3 Causal Calculus, Tools, and Frills

By “causal calculus” I mean mathematical machinery for performing the computa-
tional tasks described in the inference engine of Fig. 1.

These include:

1. Tools of reading and explicating the causal assumptions embodied in structural
models as well as the set of assumptions that support each individual causal
claim.

2. Methods of identifying the testable implications (if any) of the assumptions
in (1), and ways of testing, not the model in its entirety, but the testable
implications of the assumptions behind each causal claim.

3. Methods of deciding, prior to taking any data, what measurements ought to be
taken, whether one set of measurements is as good as to another, and which ad-

3This is important to emphasize in view of often heard critics that, in SCM, one must start with
a model in which all causal relations are presumed known, at least qualitatively. Other methods
must rest on the same knowledge, though some tend to hide the assumptions under catch-all terms
such as “ignorability,” “nonconfoundedness,” “exchangeability,” “quasi-experiment,” “exogeneity,”
and the like.
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justments need to be made so as to render our estimates of the target quantities
unbiased.

4. Methods for devising critical statistical tests by which two competing theories
can be distinguished.

5. Methods of deciding mathematically if the causal relationships of interest are
estimable from non-experimental data and, if not, what additional assumptions,
measurements or experiments would render them estimable.

6. Methods of recognizing and generating equivalent models.

7. Methods of locating instrumental variables for any relationship in a model, or
turning variables into instruments when none exists.

8. Methods of evaluating “causes of effects” and predicting effects of choices that
differ from the ones actually made.

9. A solution to the so called “Mediation Problem,” which estimates the degree to
which specific mechanisms contribute to the transmission of a given effect, in
models containing both continuous and categorical variables, linear as well as
nonlinear interactions (Pearl, 2001, 2012a).

10. A solution to the problem of “external validity” (Campbell and Stanley, 1963),
namely, deciding if a causal relation estimated in one population can be trans-
ported to another population, in which experimental conditions are different
(Pearl and Bareinboim, 2011).

A full description of these techniques is given in (Pearl, 2009a) as well as in recent
survey papers (Pearl, 2010b,c). Here I will demonstrate by examples how some of the
simple tasks listed above are handled in the nonparametric framework of SCM.

3.1 Two models for discussion

Consider a nonparametric structural model defined over a set of endogenous variables
{Y, X, Z1,

Z2, Z3, W1, W2, W3}, and unobserved exogenous variables {U, U1, U2, U
′

1, U
′

2, U
′, U ′′

1 , U ′′

2 , U ′′

3 }.
The equations are assumed to be structured as follows:

Model 1

Y = f(W3, Z3, W2, u) X = g(W1, Z3, u
′′)

W3 = g3(X, u′′

3
) W1 = g1(Z1, u

′

1
)

Z3 = f3(Z1, Z2, u
′

3) Z1 = f1(u1)
W2 = g2(Z2, u

′

2) Z2 = f2(u2)

f, g, f1, f2, f3, g1, g2, g3 are arbitrary, unknown functions, and all exogenous variables
are mutually independent but otherwise arbitrarily distributed.
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For the purpose of our illustration, we will avoid assigning any economic meaning
to the variables and functions involved, thus focusing on the formal aspects of such
models rather than their substance. The model conveys two types of theoretical (or
causal) assumptions:

1. Exclusion restrictions, depicted by the absence of certain variables from the
arguments of certain functions, and

2. Causal Markov conditions, depicted by the absence of common U -terms in any
two functions, and the assumption of mutual independence among the U ′s.

Given the qualitative nature of these assumptions, the algebraic representation
is superfluous and can be replaced, without loss of information, with the diagram
depicted in Fig. 2.4 To anchor the discussion in familiar grounds, we also present the

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Figure 2: A graphical representation of Model 1. Error terms are assumed mutually
independent and not shown explicitly.

linear version of Model 1

Model 2 (Linear version of Model 1)

Y = aW3 + bZ3 + cW2 + u X = t1W1 + t2Z3 + u′′

W3 = c3X + u′′

3 W1 = a′

1Z1 + u′

1

Z3 = a3Z1 + b3Z2 + u′

3
Z1 = u1

W2 = c2Z2 + u′

2
Z2 = u2

All u′s are assumed to be uncorrelated.

While the orthogonality assumption renders these equations regressional, we can eas-
ily illustrate non-regressional models by assuming that some of the endogenous vari-
ables are not measurable.

3.2 Illustrating typical question-answering tasks

Given the model defined above, the following are typical questions that an economist
may wish to ask.

4This is entirely optional; readers comfortable with algebraic representations are invited to stay
in their comfort zone.
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3.2.1 Testable implications (misspecification tests)

a. What are the testable implications of the assumptions embedded in Model 1?

b. Assume that only variables X, Y, Z3, and W3 are measured, are there any
testable implications?

c. The same, but assuming only variables X, Y , and Z3 are measured,

d. The same, assuming all but Z3 are measured.

e. Assume that an alternative model, competing with Model 1, has the same struc-
ture, with the Z3 → X arrow reversed. What statistical test would distinguish
between the two models?

f. What regression coefficient in Model 2 would reflect the test devised in (e)?

3.2.2 Equivalent models

a. Which arrows in Fig. 2 can be reversed without being detected by any statistical
test?

b. Is there an equivalent model (statistically indistinguishable) in which Z3 is a
mediator between X and Y (i.e., the arrow X ← Z3 is reversed)?

3.2.3 Identification

a. Suppose we wish to estimate the average causal effect of X on Y

ACE = P (Y = y|do(X = 1)) − P (Y = y|do(X = 0)).

Which subsets of variables need to be adjusted to obtain an unbiased estimate
of ACE?

b. Is there a single variable that, if measured, would allow an unbiased estimate
of ACE?

c. Assume we have a choice between measuring {Z3, Z1} or {Z3, Z2}, which would
be preferred?

3.2.4 Instrumental variables

a. Is there an instrumental variable for the Z3 → Y relationship?
If so, what would be the IV estimand for parameter b in Model 2?

b. Is there an instrument for the X → Y relationship?
If so, what would be the IV estimand for the product c3c in Model 2?
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3.2.5 Mediation

a. What variables must be measured if we wish to estimate the direct effect of Z3

on Y ?

b. What variables must be measured if we wish to estimate the indirect effect of
Z3 on Y , mediated by X?

c. What is the estimand of the indirect effect in (b), assuming that all variables
are binary?

3.2.6 Regressional digressions

Consider the linear version of our model (Model 2)

Question 1: Name three testable implications of this model

Question 2: Suppose X, Y , and W3 are the only variables that can be observed.
Which parameters can be identified from the data?

Question 3: If we regress Z1 on all other variables in the model, which regression
coefficient will be zero?

Question 4: If we regress Z1 on all the other variables in the model and then remove
Z3 from the regressor set, which coefficient will not change?

Question 5: (“robustness”) (A more general version of Question 4.)

Model 2 implies that certain regression coefficients will remain invariant when an
additional variable is added as a regressor. Identify five such coefficients with their
added regressors.5

3.2.7 Counterfactual reasoning

a. Determine if X is independent of the counterfactual Yx conditioned on all the
other endogenous variables.

b. Determine if X is independent of the counterfactual W3,x conditioned on all the
other endogenous variables.

c. Determine if the counterfactual P (Yx|X = x′) is identifiable, assuming that only
X, Y , and W3 are observed.

5According to White and Lu (2010) “A common exercise in empirical studies is a ‘robustness
check,’ where the researcher examines how certain ‘core’ regression coefficient estimates behave
when the regression specification is modified by adding or removing regressors.” “of the 98 papers
published in The American Economic Review during 2009, 76 involve some data analysis. Of these,
23 perform a robustness check along the lines just described, using a variety of estimators.” Since
this practice is conducted to help diagnose misspecification, the answer to Question 5 is essential for
discerning whether an altered coefficient indicates misspecification or not.
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3.3 Solutions

The problems posed in Section 3.2 read like homework problems in Economics 101
class. They should be! Because they are fundamental, easily solvable, and absolutely
necessary for even the most elementary exercises in nonparametric analysis. Readers
should be pleased to know that with the graphical techniques available today, these
questions can generally be answered by a quick glance at the graph of Fig. 2 (see, for
example, Pearl (2010b,c, 2012b), Greenland and Pearl (2011), or Kyono (2010)).

More elaborate problems, like those involving transportability or counterfactual
queries may require the use of do-calculus or counterfactual logic. Still, such problems
have been mathematized, and are no longer at the mercy of metaphysical thinking.

It should also be noted that, with the exception of our regressional digression
(3.2.6) into Model 2, all queries were addressed to a purely nonparametric model
and, despite the fact that the form of our equations and the distribution of the U ’s
are totally arbitrary, we were able to extract answers to policy-relevant questions in
a form that is estimable from the data available.

For example, the answer to the first identification question (a) is: The set {W1, Z3}
is sufficient for adjustment and the resulting estimand is:

P (Y = y|do(X = x)) =
∑

w1,z3

P (Y = y|X = x, Z3 = z3, W1 = w1)P (Z3 = z3, W1 = w1).

This can be derived algebraically using the rules of do-calculus or seen directly from
the graph, using the back-door criterion (Pearl, 1993). When a policy question is not
identifiable, the do-calculus is guaranteed to discover it and exit with failure.

The nonparametric nature of these exercises represents the ultimate realization
of what Heckman calls the Marschak’s Maxim (Heckman, 2010), referring to an ob-
servation made by Jacob Marschak (1953) that many policy questions do not require
the estimation of each and every parameter in the system – a combination of param-
eters is all that is necessary and, moreover, it is often possible to identify the desired
combination without identifying the individual components. The exercises presented
above show that Marschak Maxim goes even further – the desired quantity can often
be identified without ever specifying the functional or distributional forms of these
economic models.

4 Remarks on the “Structuralists” vs. “Experi-

mentalists” Debate

The Spring 2010 issue of the Journal of Econometric Perspectives (Vol. 24, No. 2) pre-
sented an interesting discussion on causal inference between two camps of economists:
the “structuralists” and the “experimentalists;” the former acknowledge their reliance
on modelling assumptions, the latter argue that they don’t, or claim to minimize such
dependence. Angrist and Pischke (2010) represented the “experimentalist” position
and Leamer (2010), Nevo and Whinston (2010), Keane (2010), and Sims (2010) de-
fending the structural approach.
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Viewed from the SCM perspective, the debate is rhetorical. It is an axiomatic
wisdom and, by now, also a logical theorem, that any causal conclusion drawn from
observational studies must rest on untested causal assumptions. Therefore, whatever
relation an instrumental design bears to an ideal controlled experiment is just one
such assumption and, to the extent that the “experimental” approach is valid, it is
a routine exercise in structural economics. However, the philosophical basis of the
“experimentalist” approach, as it is currently marketed, is misguided and potentially
dangerous, for it takes surface similarity to the randomized controlled trial ideal to be
its guiding principle, as opposed to explicitly examining the validity of the assump-
tions. The fallibility of this paradigm has surfaced in a number of examples (e.g.,
Pearl 2009b, 2011a,b) and has given birth to a school of research that in the name of
mimicking controlled experiments avoids making modelling assumptions transparent.

Another take on the “experimental - structural” debate is provided by Heckman
(2010) who reiterates the superiority of the structural over the Neyman-Rubin model,
but stops short of identifying the key element for that superiority. This is important
because, after all, the structural and potential-outcome approaches are logically equiv-
alent, differing only in the languages used to encode assumptions; the former using
equations, the latter using counterfactual independencies (see Pearl 2009a, pp. 230–
234). So why did the “experimentalists” end up with the primitive, single-equation
exercises reported in Angrist and Pischke (2010)? Why did they not import the
rich knowledge that structural modellers encode in their equations, to make their
assumptions compelling, explicit and transparent?

I believe the answer lies in an observation made by Sims (2010): “using instrumen-
tal variable formulas while simply listing the instruments, with little or no discussion
of what kind of larger multivariate system would justify isolating the single equation
or small system to which the formulas are applied, was, and to some extent still is, a
common practice.”

By rejecting structural equations as a language for expressing substantive eco-
nomic knowledge, and confining themselves exclusively to the language of potential
outcomes6 “experimentalists” have in effect cut themselves off from the one language
in which large number of relationships can be expressed meaningfully and reasoned
about.

At the very least, “experimentalists“ could have acquired the basic tools of identi-
fying instrumental variables in a system of equations and could have learned to solve
elementary problems such as those posed in 3.2.4. This they refuse to do citing theol-
ogy (Rubin, 2010) and lack of evidence (Imbens, 2010; Pearl, 2009b); at the price of

6 The potential outcome language has been shown to be logically equivalent to the language of
nonparametric structural equations (Galles and Pearl, 1998; Halpern, 1998); a theorem in one is a
theorem in another, and an assumption in one has a corresponding assumption in the other. The two
differ only in how substantive information is encoded. The potential outcome language insists on
encoding such information in the form of conditional independence statements about counterfactual
variables, a cognitively formidable task, while the structural equation model permits modelers to
encode this information in the form of causal-effect relationships representing economic processes. A
simple translation between the two is given in (Pearl, 2009a, pp. 231–234) which “experimentalists”
have so far ignored.
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having to confine their analysis to ”using instrumental variables formulas while simply
listing the instrument.” It is not lack of good intention, but lack of modern mathe-
matical tools that prevents the “experimentalists” from conducting a “discussion of
what kind of larger multivariate system would justify” their formulas.7

5 Conclusions

This paper traces the logic and mathematical machinery needed for causal analysis
from the original insights advanced by Haavelmo to the nonparametric analysis of
Structural Causal Models (SCM). We have demonstrated by examples the type of
queries the SCM framework can answer, the assumptions required, the language used
for encoding those assumptions and the mathematical operations needed for deriving
causal and counterfactual conclusions.

Not surprisingly, graphical formalism was found to be the most succinct, natural
and effective language for representing nonparametric structural equations; it high-
lights the assumptions and abstracts away unnecessary algebraic details. It is for
these reasons that graphical representations have become an indispensable second
language in the health sciences (Greenland, Pearl, and Robins, 1999; Greenland and
Pearl, 2011 or Kyono, 2010) and are making their way towards the social and be-
havioral sciences (Morgan and Winship, 2007). I am convinced therefore that, once
the power of graphical tools is recognized through simple examples, economists too
will add them to their arsenal of formal methods and be able to reap the benefits of
causal analysis, parametric as well as nonparametric.8 Acquiring these tools enables
researchers to recognize the testable implications of a system of equations, locate
instruments in such systems, decide if two such systems are equivalent, if causal ef-
fects are identifiable, if two counterfactuals are independent given another, whether a
set of measurements will reduce bias, and, most importantly, reading the causal and
counterfactual information that such systems convey.

The development of powerful mathematical tools for deriving or predicting the
logical ramifications of untested theoretical assumptions will enable us to reverse-
engineer our inferences and learn to minimize sensitivity to those assumptions.

7The potential outcome language, is rather inept for capturing substantive knowledge of the
kind carried by structural equation models. The restricted vocabulary of “ignorability,” “treatment
assignment” and “missing data” that has ruled (and still rules) the potential-outcome paradigm is
not flexible enough to specify transparently even the most elementary models (say a three-variable
Markov chain) that researchers wish to hypothesize (Pearl, 2011c).

8Frankly, a recent survey of econometric textbooks have made me more pessimistic on whether
economists can lift themselves to the age of modernity. Research leadership is zealously guarding
the tradition from imported new tools (Pearl, 2009a, pp. 374-80) and textbooks continue to conflate
regressional and structural vocabulary with increasing frequency (Chen and Pearl, 2012).
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